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Abstract Efficient air quality management is critical to
protect public health from the adverse impacts of air
pollution. To evaluate the effectiveness of air pollution
control strategies, the US Environmental Protection
Agency (US EPA) has developed the Software for Model
Attainment Test-Community Edition (SMAT-CE) to assess
the air quality attainment of emission reductions, and the
Environmental Benefits Mapping and Analysis Program-
Community Edition (BenMAP-CE) to evaluate the health
and economic benefits of air quality improvement
respectively. Since scientific decision-making requires
timely and coherent information, developing the linkage
between SMAT-CE and BenMAP-CE into an integrated
assessment platform is desirable. To address this need, a
new module linking SMAT-CE to BenMAP-CE has been
developed and tested. The new module streamlines the
assessment of air quality and human health benefits for a
proposed air pollution control strategy. It also implements
an optimized data gridding algorithm which significantly
enhances the computational efficiency without compro-
mising accuracy. The performance of the integrated
software package is demonstrated through a case study
that evaluates the air quality and associated economic
benefits of a national-level control strategy of PM2.5. The
results of the case study show that the proposed emission
reduction reduces the number of nonattainment sites from
379 to 25 based on the US National Ambient Air Quality
Standards, leading to more than US$334 billion of

economic benefits annually from improved public health.
The integration of the science-based software tools in this
study enhances the efficiency of developing effective and
optimized emission control strategies for policy makers.

Keywords air quality assessment, human health benefit,
economic benefit, air quality attainment assessment, air
pollution control strategy, decision support system

1 Introduction

Air pollution has adverse health effects including pre-
mature mortality [1–3], morbidity of cardiovascular
diseases [4] and respiratory problems [5,6]. The World
Health Organization (WHO) estimates that ambient air
pollution causes 3.7 million deaths in 2012, which include
40% ischemic heart disease, 40% stroke, 11% chronic
obstructive pulmonary disease (COPD), 6% lung cancer,
and 3% acute lower respiratory infections in children [7].
Therefore, improving air quality through emission control
is critical to protect public health.
Air quality management is a practice that evaluates

emission reduction options to achieve a desired air quality
standard in many countries [8]. To determine the emission
reduction goals, careful considerations must be given to the
effectiveness of emission control, the cost of the control
technologies as well as the economic and social benefits of
air quality improvement [9]. Based on the analysis of costs
and benefits, policy makers can implement the most
effective control strategy to protect the public health. Such
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assessment process typically involves air quality simula-
tions using complex atmospheric models, massive data
processing of model output, and complicated cost-benefit
analysis [10]. Therefore, a suite of software tools is needed
to facilitate the process of air quality management.
A number of software tools for air quality management

have been developed by US EPA to address the analytical
needs. These include (available at www.abacas-dss.com):
(1) the Environmental Benefits Mapping and Analysis
Program-Community Edition (BenMAP-CE) for evaluat-
ing human health and economic benefits associated with
improved air quality [11]; (2) the Software for Model
Attainment Test-Community Edition (SMAT-CE) for
attainment test of the ambient air quality standard under
various air pollution control strategies [12]; (3) the
Response Surface Model-Visualization Analysis Tool
(RSM-VAT) for real-time estimates of air quality concen-
trations caused by air emission reduction [13]; (4) the
Multi-Pollutant Control Cost Model (CoST CE) for
evaluating the cost of emission control technologies to
achieve specified emission reduction goals [14]. These
tools operate in a stand-alone fashion and require further
integration to streamline the process of air quality
management.
This study presents an integrated assessment platform

incorporating SMAT-CE and BenMAP-CE, and demon-
strates the application of the integrated software tools for
evaluating air quality attainment and the health and
economic benefits of emission control.

2 Development of software integration

2.1 Development of linkage between SMAT-CE and
BenMAP-CE

The integrated assessment process of SMAT-CE and
BenMAP-CE is illustrated at Fig. 1. The integrated
assessment platform aims to conduct the air quality
attainment for an air pollution control strategy first, and
then seamlessly evaluate the correlated human health and
economic benefits. Combining the modeled and observa-
tional input data, SMAT-CE predicts (1) the future-year air
quality data at each monitoring site for air quality
attainment test, and (2) the base-year and future-year air
quality data in each model grid (such as at 12km � 12km
spatial resolution) for further analysis in BenMAP-CE.
With the base-year and future-year air quality input data,
BenMAP-CE can calculate the human health and eco-
nomic benefits due to the air quality improvement. Other
necessary input data/ choices for the health and economic
benefits analysis include population data, incidence rate
data, health impact functions, and valuation functions, are
contained in the BenMAP-CE database.
The gridded air quality data generated by SMAT-CE

cannot be directly applied as input to BenMAP-CE
because of two differences in data format: (1) the gridded
data of SMAT-CE are point values (at one point of each
grid cell, e.g., the centroid), while the air quality input data
for BenMAP-CE need areal values; (2) the gridded data of

Fig. 1 Development of linkage between SMAT-CE and BenMAP-CE to sequentially evaluate air quality and correlated health and
economic benefits of proposed emissions reductions
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SMAT-CE lack several fields needed for BenMAP-CE. To
bridge the data gap, a new module is developed to achieve
efficient data conversion. It performs a GIS spatial join
process to convert the point-based data to the area-based
data, which includes several steps: (1) user imports an
appropriate shape file (its spatial resolution should be
consistent with the one of SMAT-CE result) to provide grid
information; (2) the program changes the shape file
projection to “Lambert,” captures the centroid of each
grid cell based on the corresponding method provided by
DotSpatial [15], and records the coordinate of each
centroid; (3) for each target point in SMAT-CE result, the
program gets the nearest centroid and assigns the grid
information of this centroid to it. Through the above steps,
the point-based air quality data can be converted to an area-
based one. After that, additional fields which specify the
type (such as annual average, quarterly average, daily) of
the air quality data file are added to the converted data file.
There are three fields needed: metric for defining daily
average/ 8-h max/ 1-h max etc., seasonal metric for
defining quarterly average or not, and annual metric for
defining annual average or not. For example, the metric,
seasonal metric and annual metric should be “daily
average”, “quarterly average” and “annual average” for
annual PM2.5 data, and “daily average”, “null” and “null”
for daily PM2.5 data.
In the newly developed module, a new data interface is

also included to speed up the data retrieval and transfer
between SMAT-CE and BenMAP-CE. Take annual PM2.5

as an example, after SMAT-CE generates BenMAP-ready
input data, a linking button is provided in the result viewer
page to link to BenMAP-CE. Once user clicks this button,
SMAT-CE will start the BenMAP-CE program in the
background, and a linking window will appear for user to
select the analysis pollutant and data grid type from the
correlated values in BenMAP-CE database. When these
two settings are completed, the air quality results data will
be automatically loaded into BenMAP-CE. After that, user
can set other options (e.g., population data, health impact
functions) and then run the configuration to get the health
and economic benefits results.

2.2 Air quality benefits assessment

SMAT-CE is an updated tool upon Modeled Attainment
Test Software (MATS) [16] to demonstrate the effective-
ness of air emission reduction proposed in the state
implementation [17] for meeting the National Ambient Air
Quality Standards (NAAQS) and the Regional Haze Rule.
In this study, the term “attainment” refers to meeting the air
pollutant concentration limit as specified in the NAAQS.
SMAT-CE uses statistical methods to combine observa-
tional and modeled data for air quality attainment
assessment at air monitoring sites and grid cells. The
methodology and algorithm have been described in details
in Wang et al. [12]. Briefly, the future-year pollutant

concentration at a specific site (a monitoring site or grid
cell) is predicted using a base-year observational data and
the modeled data obtained from the base-year and future-
year air quality simulations. The future-year pollutant
concentration is estimated as the product of the base-year
monitoring value (ppb or μg$m–3) and the concentration
ratio of future-year modeled value to base-year one
(unitless). The estimated results include (1) future-year
pollutant concentrations at monitoring sites for conducting
NAAQS attainment test and (2) spatial distribution of
pollutant concentration for analyzing regional air pollu-
tion.
A data gridding algorithm provided by DotSpatial [15] is

employed to calculate weighted pollutant concentration at
each grid cell in SMAT-CE, since not every grid cell
contains a monitoring site. The calculation is based on
those base-year observational values. For each grid cell,
the algorithm first identifies neighboring monitors by
drawing Thiessen polygons, and then calculates a weighted
average value from these neighboring observational values
by a factor of distances or square of the distances [15]. In
the standard algorithm provided by DotSpatial, the
Thiessen polygons are drawn with low efficiency in the
whole domain. In this work, we performed an optimization
to the standard data gridding algorithm. We define a
limited circular area (center: grid cell centroid; radius:
about 1665km) rather than the whole domain to perform
the drawing process. As a result, this optimization shortens
the computational time of interpolation process from
190.2 min to 49.7 min (by 73%) in the case study. To
ensure the accuracy and reliability of the gridded pollutant
concentration results generated by the improved algorithm,
the results are compared to those produced by the standard
algorithm using the same input data and configurations.
The mean normalized bias (MNB) is utilized for the
comparison:

MNB ¼ 1

N

XN

i¼1

Cm –C0

C0
, (1)

where N is the number of monitoring sites, Cm is the
predicted pollutant concentration
produced by the improved algorithm at site i, and C0 is

the predicted pollutant concentration produced by standard
algorithm at site i. The comparison shows that the
improved algorithm can replicate the estimated results of
the standard algorithm with a MNB of – 0.0085% (Fig. 2
(a)). Fig. 2(b) shows the spatial difference of the two data
sets, which is indistinguishable in the study area (the
conterminous US).

2.3 Health and economic benefits evaluation

BenMAP-CE is a software tool improved upon legacy
BenMAP [18]. It can estimate human health and economic
benefits associated with air quality improvement. The
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algorithm and implementation of BenMAP-CE are
described in details elsewhere [11,19]. The evaluation
process is based on the data of a base and a future year air
quality, population, incidence of disease (such as pre-
mature mortality) and algorithms that define the cost of
health impact and valuation [11]. The quantification of
human health and economic benefits is accomplished
through three major steps. In the first step, BenMAP-CE
calculates the changes in ambient air quality using either
base-year and future-year modeled or observational data.
Next, it estimates the health impact changes of selected
health endpoints (such as premature death, chronic
bronchitis, and acute respiratory symptoms) due to air
quality improvement. The quantification of health impact
changes is based on the health impact functions. A log-
linear health impact function can be written as:

ΔY ¼ Y0ð1 – e – βΔCÞ�Pop, (2)

where ΔY is the estimated change in the health impacts due
to the pollutant concentration change, Y0 is the baseline
incidence of the health endpoint, β is the coefficient of
association between pollutant concentration and health
impact, ΔC is the estimated change of pollutant concentra-
tion, Pop is the size of exposed population. The baseline
incidence rates and exposed population data are contained
in the BenMAP-CE database. The incidence rates are
calculated based on the statistical data obtained from the
Centers for Disease Control, National Center for Health
Statistics, Healthcare Cost and Utilization Project, other
association (such as American Lung Association) or
correlated studies in the US Most of the initial data are
presented in the user’s manual appendices of BenMAP-CE
[20]. Take the all-cause mortality rate (per year) as an

example; the national average rate is 0.00015 for those
people older than 85 in 2020. The population data in
BenMAP-CE is built on the block-level data from 2010 US
Census, and county-level population predictions of each
year from 2000 to 2040 (can be converted to other level,
such as state) [20].
Finally, BenMAP-CE evaluates the economic value as

the product of the health impact reduction (case) and health
effect-specific dollar value (US$ per case). Each record of
health impact or economic result contains a single point
estimate and a distribution of possible values due to the
uncertainty resulting from the sampling surrounding the
pollutant coefficients of health impact function or valua-
tion function. For the estimated results (different health
impact functions) of the same health endpoint, BenMAP-
CE allows to pool them to achieve study-specific estimates
synthesis or reduce the uncertainty of results with larger
sample size. A variety of pooling approaches are provided
in BenMAP-CE, including sum, subtraction, fixed effects
and random/ fixed effects weights etc. [21]. In addition, the
estimated results can be aggregated between different data
grids (e.g., county, state, and nation).
BenMAP-CE provides a series of visualization analyses

for health impact estimates and economic benefits:
(1) “GIS” tab for mapping result in different levels (e.g.,
county, state, and nation), (2) “Data” tab for detail
information, (3) “Chart” tab for graphical presentation,
(4) “Cumulative Distribution Function (CDF) graphs” tab
for uncertainty distribution, and (5) “Configuration” tab for
recording user-specified settings. They are combined in a
result-displaying area, which is integrated in the main
window, providing users an easy-to-use operation inter-
face.

Fig. 2 Comparison of the base-year pollutant concentration generated by the improved algorithm and the standard algorithm (sample =
89308): (a) distribution of the normalized bias, (b) spatial difference of the pollutant concentration
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3 Application of the integrated policy
making tool

3.1 Case study

A US test case is performed to examine the performance of
the integrated software tool. In the case study, PM2.5 is
selected as the test pollutant and the selected control
strategy is 25% NOx reduction, 25% SO2 reduction, 100%
reduction on residential wood combustion and 50% PM2.5

reduction from non-EGU (Non-Electric Generating Units)
of the emission levels in 2007. The annual PM2.5

concentration in the NAAQS is specified as 12μg$m–3,
which is required to be achieved by 2020 in the
conterminous US Therefore, the base year is 2007 and
the targeted control year is 2020. The simulated output
using CMAQ is applied for this evaluation. The CMAQ
results have been verified, which indicates that the model is

capable of simulating the annual PM2.5 with a MNB of
– 18% (Fig. 3).
Using the observational (2007) and modeled data (2007

and 2020) of PM2.5, SMAT-CE projects the PM2.5

concentrations in 2020 at the monitoring sites. The data
are then utilized to determine the level of compliance to air
quality standard. Based on the proposed emission reduc-
tion, the number of nonattainment sites (PM2.5>
12 μg$m–3) is predicted to be 25 in 2020 as compared to
379 in 2007. The majority of the non-attainment sites will
be located in California (22 out of 25, Fig. 4).
After the attainment test, the assessment platform

exports the gridded air quality estimates by SMAT-CE to
BenMAP-CE for health and economic benefits analysis.
Accordingly, we choose health impact functions (HIFs)
from epidemiological studies that meet four quality
standards: (1) use PM2.5 concentrations as primary
exposure pollutant, (2) cover the potentially exposed

Fig. 3 Comparison of the base-year modeled and observational annual PM2.5 concentrations at all the monitoring sites within the US:
(a) distribution of the normalized bias, (b) variation patterns of those values at monitoring sites within California

Fig. 4 Attainment test results of annual PM2.5 under the proposed air pollution control strategy: (a) distribution of annual PM2.5

concentration at each monitoring site in 2007 (μg$m–3), (b) distribution of annual PM2.5 concentration at each monitoring site in 2020 (μg
$m–3); the air pollution control strategy includes 25% NOx reduction, 25% SO2 reduction, 100% reduction on residential wood
combustion and 50% PM2.5 reduction from non-EGU (Non-Electric Generating Units) of the emission levels in 2007
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population, (3) present appropriate model specification (e.
g., controlling for confounding pollutants), and (4) be
published in peer-reviewed journal. Table 1 lists the
selected PM2.5-related HIFs used in the analysis, and the
valuation methods used to estimate the monetary values.
We select “fixed effects” [21] as the pooling method for the
health impact functions with the same health endpoint and
age range. This pooling method weights each incidence
estimates in proportion to the inverse of its variance, since
the fixed effects model assumes that there is a single true
concentration-response relationship and the differences
among incidence estimates from different studies are
therefore simply the result of sampling error.
Table 2 presents the health and economic benefits results

of each health endpoint based on the selected health impact
functions and valuation functions listed in Table 1. The
total economic benefits of the improved air quality caused
by the lower PM2.5 concentration are estimated to be more
than US$334 billion. The monetary benefit is primarily
contributed by the decrease of premature mortality
(> 95%), consistent with earlier studies [18,19]. The
distribution of monetary health benefits is displayed in
Figs. 5(a) and 5(b). Based on the proposed emission
reductions, California, New York and Pennsylvania are the
three states that benefit the most from the improved air
quality. Additional details of each health endpoint are also
available in the data results/ files prepared by the software
tool. For example, New York has the largest reductions on

hospital admissions and emergency room visits, while
California benefits the most in almost all other health
endpoints. The distribution of monetary health benefits
(Fig. 5(b)), air quality benefits (Fig. 5(c)) and population
data (Fig. 5(d)) suggests that high economic benefits are
proportional to large population and (almost) to the great
change in pollutant concentration, which is also indicated
by Eq. (2).
Combining the air quality benefits and related health and

economic benefits, policy maker can determine the more
optimal control approach from specific emission control
alternatives. Here the “more optimal control approach”
refers to the control scenario whose air quality can attain
the target/ standard and economic benefits are the largest in
all the emission control alternatives. Users also have the
option to further improve a control strategy through
synthesis analysis of the predicted future-year air quality
and a science-specific ratio of the health (economic)
benefits to air quality (AQ) benefits. The distribution of
predicted air quality in 2020 is presented in Fig. 6(a), and
the health/AQ benefit ratio in each state is displayed in Fig.
6(b). In the case study, for the regions where the future-
year annual PM2.5 concentration is far below the NAAQS
(< 7.2 μg$m–3) (e.g., West Virginia, Virginia) and the ratio
is low, the emission reduction rate can be cut down.
Instead, for the nonattainment state with high ratio (e.g.,
California), the emission reduction rate should be
increased in main sources (local or regional) to achieve

Table 1 Selected PM-related health impact functions for analyses

Health endpoints start age end age epidemiological study valuation methoda)

mortality, all cause 25 99 Krewski et al. [22] value of statistical life

0 1 pooled estimateb):
Woodruff et al. [23]
Woodruff et al. [24]

respiratory hospital admissions 65 99 pooled estimateb):
Zanobetti et al. [25]
Kloog et al. [26]

cost of illness

18 64 Moolgavkar [27]

0 17 Babin et al. [28]

cardiovascular hospital admissions 65 99 pooled estimateb):
Bell et al. [29]

Bell [30]

18 64 Moolgavkar [31]

chronic bronchitis 27 99 Abbey et al. [32]

acute myocardial infarction, non-fatal 18 99 Zanobetti et al. [25]

asthma emergency room visits 0 99 pooled estimateb):
Slaughter et al. [33]

Mar et al. [34]
Glad et al. [35]

acute bronchitis 8 12 Dockery et al. [36] willing to pay

asthma exacerbation 6 18 Ostro et al. [37]

acute respiratory symptoms 18 64 Ostro and Rothschild [38]

Notes: a) the valuation methods are selected from BenMAP-CE database depends on the health endpoint and its age range; b) the pooling method is “fixed effects”
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both the targeted air quality and large increase in health and
economic benefits. Besides, regions with high ratio (e.g.,
California, Texas) would suggest higher priority in the
implementation of the control strategy.
Fann et al. [18] estimated the health and economic

benefits of eliminating each ton of PM2.5 and PM2.5

precursor (SO2 and NOx) emission in the conterminous US
in 2005 using the legacy BenMAP. Based on the presented

total emissions (Fann et al. [18] Table1) and estimated
benefit results of per-ton emission reduction (Fann et al.
[18] Fig. 2), we manually calculated the economic benefits
of the emission control scenario same to our case study.
The independent benefits of direct PM2.5, SO2 and NOx

reduction were calculated first, and then added up to get the
total economic benefits as US$373 billion. The final
benefits result is in good agreement with the economic

Table 2 Total annual monetary valuations of the national air pollution control strategy (health impacts rounded to the nearest integer, and economic

values rounded to the nearest million US$) [95% confidence interval]

health endpoints health impacts/(hundred cases) [95% CI] economic values/(million US$)a) [95% CI]

mortality, all cause 376
[254–496]

329360
[30731–897675]

respiratory hospital admissions 128
[-35–231]

367
[4–590]

cardiovascular hospital admissions 111
[71–152]

435
[300–570]

chronic bronchitis 252
[7–491]

3051
[444–6665]

acute myocardial infarction, non-fatal 39
[19–60]

378
[181–566]

asthma emergency room visits 205
[-78–436]

9
[-2–19]

acute bronchitis 534
[-133–1157]

25
[-1–68]

asthma exacerbation 30630
[-616–61736]

173
[-5–436]

acute respiratory symptoms 281759
[230003–333283]

888
[44–1810]

total / 334686
[31696–908399]

Note: a) the economic values include an inflation and income growth adjustment over time (2010 US$)

Fig. 5 Distribution of (a) aggregated total economic benefits in states (US$), (b) total economic benefits (US$), (c) air quality benefits
(μg$m–3) and (d) population data of 0–99 age range (person) in 12 km � 12 km spatial resolution
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benefits estimated in our study (US$334 billion). The
deviation of the results is mainly caused by the difference
of the studied health endpoints and analysis year: (1) the
estimated results in Fann et al. [18] include additional
benefits from reductions in work loss days, upper
respiratory symptoms and lower respiratory symptoms;
(2) the study year is 2005 in Fann et al. [18] and 2020 in
our study, which indicates that the used incidence rates and
the population data in these two analyses have a little
difference. Nonetheless, the overall agreement between
our results and those reported by Fann et al. [18]
corroborates the reliability of the integrated assessment
platform.

3.2 Advantages of integrated assessment platform

This software development based on SMAT-CE and
BenMAP-CE offers multiple advantages in the assessment
of air quality improvement and its economic benefits. First,
the software eliminates the operational burden of data
format conversion and input file preparation for BenMAP-
CE. The newly developed linking module automates the
conversion of point-based data to area-based data, creation
of required data fields and intermediate data files (e.g.,
baseline and control), and retrieval of baseline and control
data. Compared to the manual operation time of the above
steps (the spatial join operation is based on ArcGIS tool),
this new module reduces the operational burden by 43%.
Secondly, it significantly decreases the runtime of inter-
polation process in SMAT-CE by 73% through the
optimization of the computational algorithms for the
presented US case study. Thirdly, users have an easy
access to a suite of air quality management tools through a
familiar Windows user interface. The developed software
platform is presented in a user-friendly graphical interface
and has standard windows-style operation. Finally, the
integrated assessment platform of SMAT-CE and Ben-
MAP-CE can provide comprehensive air quality and health
and economic benefits to policy makers for formulating an
effective and optimized air pollution control strategy.
Further improvement of the assessment platform will be

extending the analysis of AQ-health benefit to cost-benefit,

which can be achieved by integrating our developing
software for air pollution control cost evaluation (Control
Strategy Tool-Community Edition, CoST-CE) in the near
future. The integrated cost-benefit analysis system can
provide more intuitive information, such as how many
monetary health benefits can be earned comparing to the
control cost. Through balancing the engineering cost and
human health benefits, policy makers can then get the cost-
effective air pollution control strategy.

4 Conclusions

This paper describes an integration of SMAT-CE (Software
for Model Attainment Test-Community Edition) and
BenMAP-CE (Environmental Benefits Mapping and
Analysis Program-Community Edition) for assessing air
quality attainment and the health and economic benefits of
emission control strategies. The developed platform
assesses the effectiveness of a proposed emission reduction
in meeting specified air quality standards, and seamlessly
quantifies the corresponding monetary health benefits. The
newly developed computational module significantly
enhances the computational efficiency in the two stand-
alone software packages and simplifies the data pre-
processing with a friendly graphical user interface.
The case study demonstrates that the integrated assess-

ment platform is capable of examining the attainment of
the NAAQS by a proposed emission control strategy for
PM2.5 and analyzing the health and economic benefits. The
software not only provides comprehensive information to
support selecting appropriate air pollution control strategy,
but also offers a science-specific ratio of health and
economic benefits to air quality benefits for strategy
optimization. The presented software serves as a compre-
hensive and efficient assessment platform for policy
makers to evaluate air quality improvement as well as
health and economic benefits of air pollution control.
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